The Detection of Fraudulent Financial Statements: an Integrated Language Model
نویسندگان
چکیده
Among the growing number of Chinese companies that went public overseas, many have been detected and alleged as conducting financial fraud by market research firms or U.S. Securities and Exchange Commission (SEC). Then investors lost money and even confidence to all overseas-listed Chinese companies. Likewise, these companies suffered serious stock sank or were even delisted from the stock exchange. Conventional auditing practices failed in these cases when misleading financial reports presented. This is partly because existing auditing practices and academic researches primarily focus on statistical analysis of structured financial ratios and market activity data in auditing process, while ignoring large amount of textual information about those companies in financial statements. In this paper, we build integrated language model, which combines statistical language model (SLM) and latent semantic analysis (LSA), to detect the strategic use of deceptive language in financial statements. By integrating SLM with LSA framework, the integrated model not only overcomes SLM’s inability to capture long-span information, but also extracts the semantic patterns which distinguish fraudulent financial statements from non-fraudulent ones. Four different modes of the integrated model are also studied and compared. With application to assess fraud risk in overseas-listed Chinese companies, the integrated model shows high accuracy to flag fraudulent financial statements.
منابع مشابه
Provide an optimal audit model to reduce fraudulent financial reporting
Fraud in financial reporting and accounting has grown significantly in recent years due to the financial crises created in companies, so that fraud has become a political and economic issue and today the legislature, the accounting profession and the causes The creation of fraud in it as well as the ways to deal with fraudulent behavior in financial statements have received special attention. T...
متن کاملFinancial Reporting Fraud Detection: An Analysis of Data Mining Algorithms
In the last decade, high profile financial frauds committed by large companies in both developed and developing countries were discovered and reported. This study compares the performance of five popular statistical and machine learning models in detecting financial statement fraud. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements betw...
متن کاملPresenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm
both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, 21 variables were selected to predict fraud in financial reporting that finally, ...
متن کاملThe Ranking of Fraudulent Financial Reporting By Using Data Envelopment Analysis: Case of Pharmaceutical Listed Companies
Fraudulent financial reporting has been one of the most sensitive issues on the business world. Financial statements that conceal the company's facts have caused great losses to its stakeholders. The ranking of companies based on fraudulent financial reporting is one of the key issues for performance analysis. This study, by using financial variables and the data envelopment analysis methodolog...
متن کاملDetection of fraudulent financial statements using the hybrid data mining approach
The purpose of this study is to construct a valid and rigorous fraudulent financial statement detection model. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements between the years 2002 and 2013. In the first stage, two decision tree algorithms, including the classification and regression trees (CART) and the Chi squared automatic interac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014